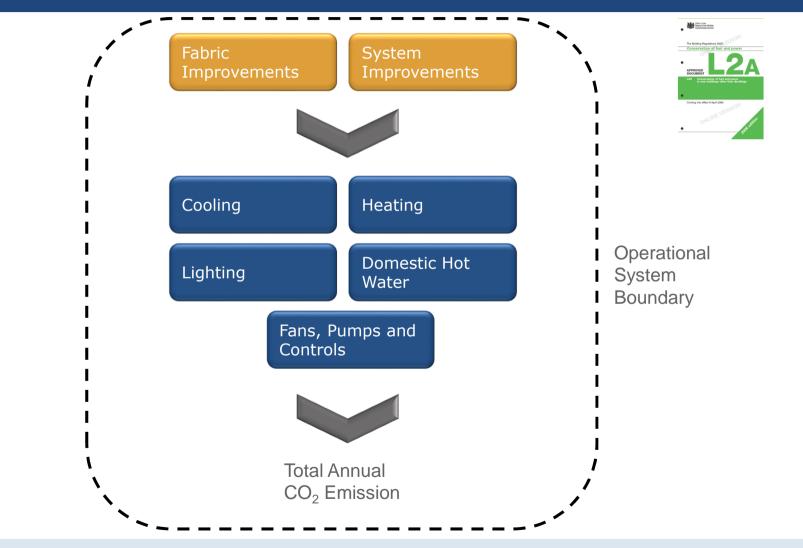
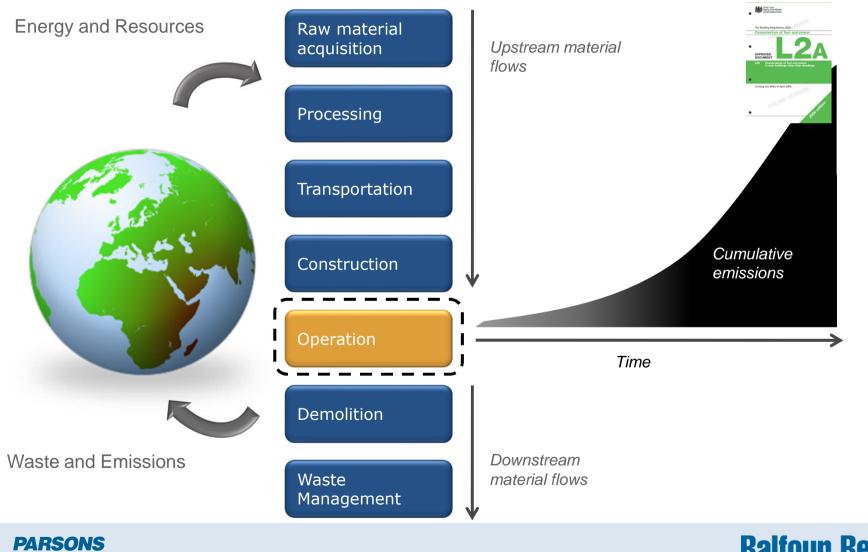
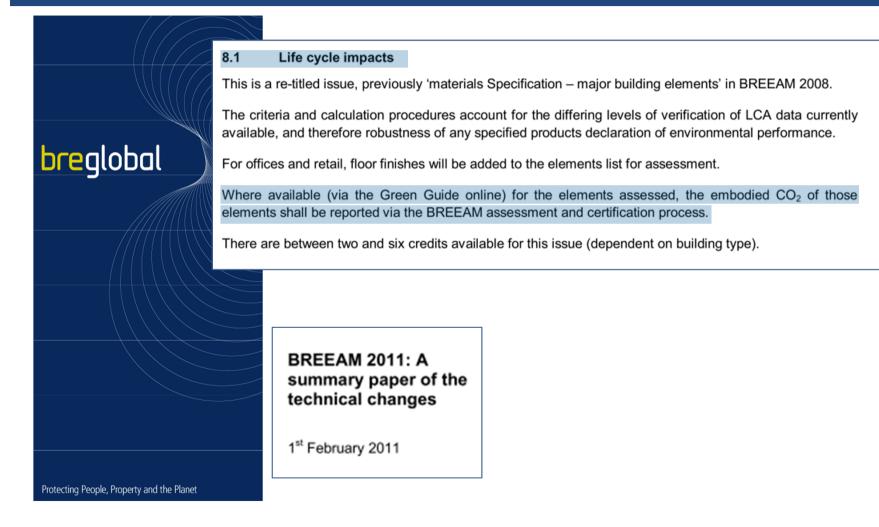
Whole life carbon analysis

David Williams


Introduction

- Background to whole life carbon assessment
- Recent developments
- Background data
- Process of lifecycle assessment
- Case study project
- Results and discussion


Regulatory requirements



Life cycle perspective

BRINCKERHOFF

Recent developments BREEAM 2011

Recent developments Looking forward...

Innovation and Growth Team

HM Government

Low Carbon Construction

November 2010

BRINCKERHOFF

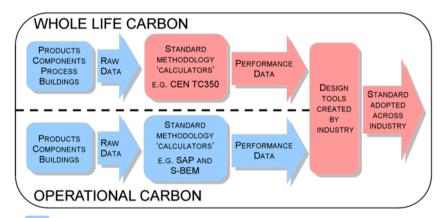
PARSONS

- Embodied energy is therefore important, and it needs to be brought into the systems used for appraisal of projects and hence into the design decisions made in developing projects.
- The assessment would require a CO_2 equivalent figure for each year of a project's life, considering emissions in the year they occur and not distinguishing embodied from operational emissions.
- **6** This is not instead of paying due attention to operational energy, but rather in addition so that "whole life carbon" becomes as important a means of appraisal as whole life cost should be.

Recommendation 2.1: That as soon as a sufficiently rigorous assessment system is in place, the Treasury should introduce into the Green Book a requirement to conduct a whole-life (embodied + operational) carbon appraisal and that this is factored into feasibility studies on the basis of a realistic price for carbon.

Recommendation 2.2: That the industry should agree with Government a standard method of measuring embodied carbon for use as a design tool and (as Recommendation 2.1 above) for the purposes of scheme appraisal.

Recent developments Looking forward...

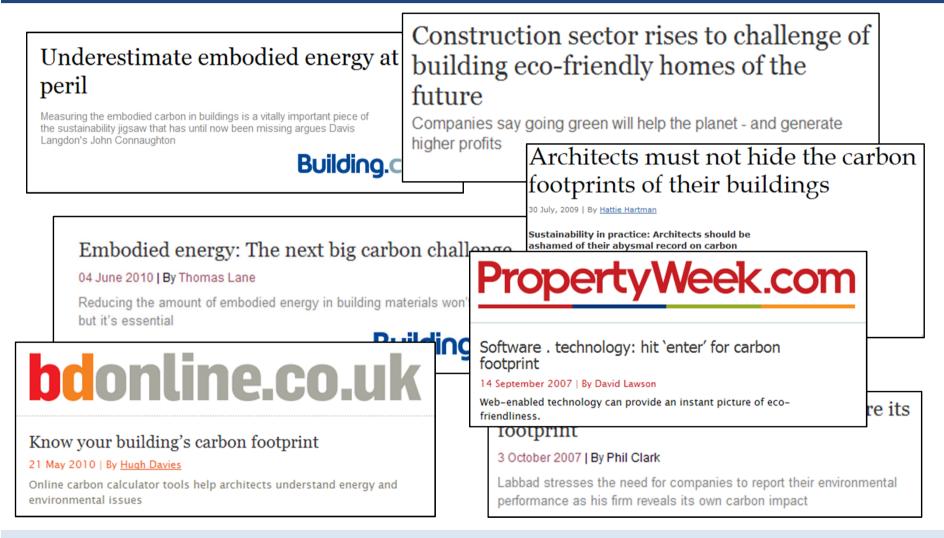

Government response

G Measuring embodied and whole life carbon

Since the publication of the IGT report, this is the single biggest issue that organisations have made representations to Government on.

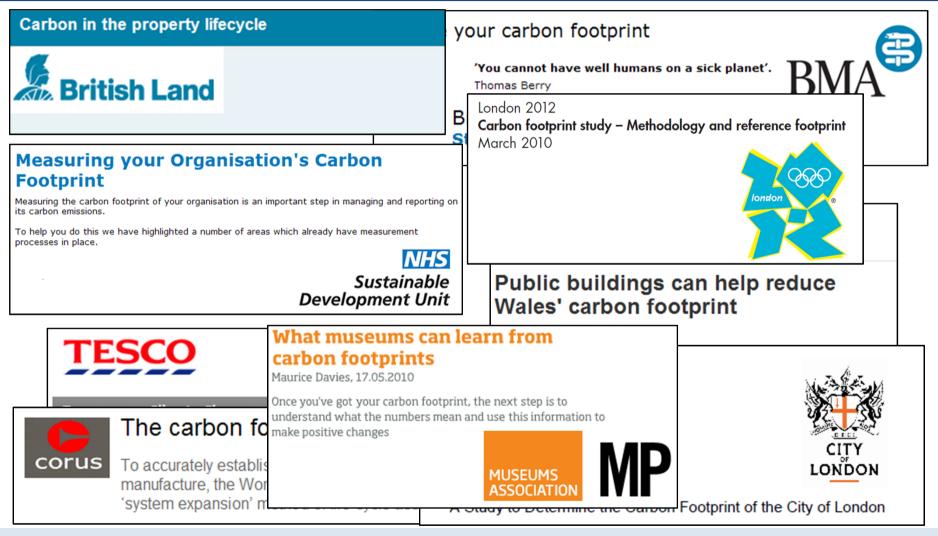
ACTIVITIES COMPLETED

ACTIVITIES UNDERWAY OR TO BE COMPLETED


Owner	Action	Date	IGT Rec.
DCLG	Continued support for the development of a European standard for embodied carbon measurement tool by CEN TC350 ²⁶	Ongoing	2.2 6.15
Industry	Continued support for the development of embodied carbon measurement tools. Including support from BRE, UK-GBC, CIC, BSI, RICS, EEPH and CPA	Ongoing	2.2 6.15

June 2011

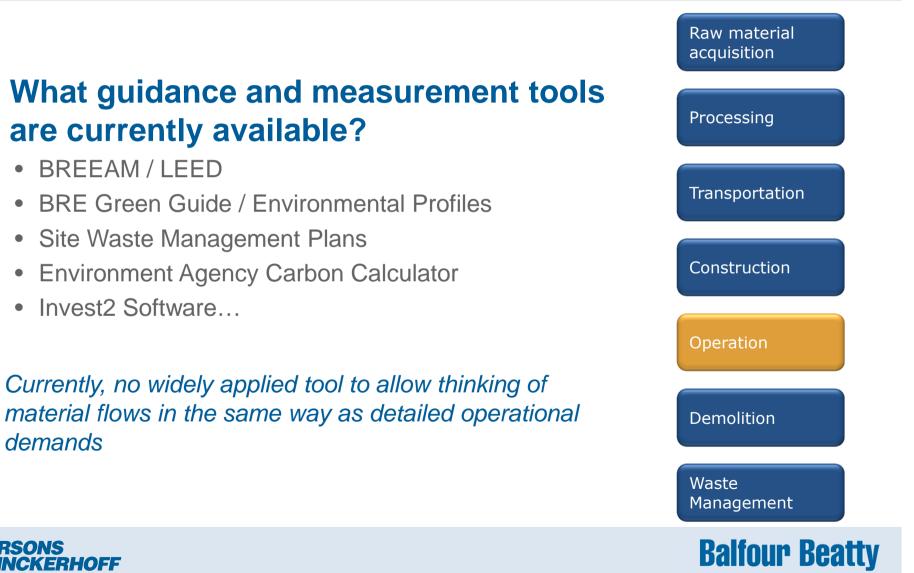
PARSONS BRINCKERHOFF


Who cares about whole life carbon?

Who cares about whole life carbon?

PARSONS

BRINCKERHOFF


Life cycle influence of construction materials

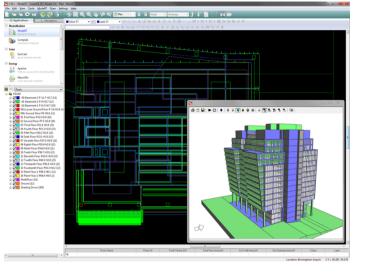
Life cycle perspective

PARSONS

Challenges of building life cycle assessment

Where do we draw the boundaries of analysis? What are the environmental impacts of a particular material? How much material have we got in the first place? How do we assess this in the early stages of design?

Time – the design process



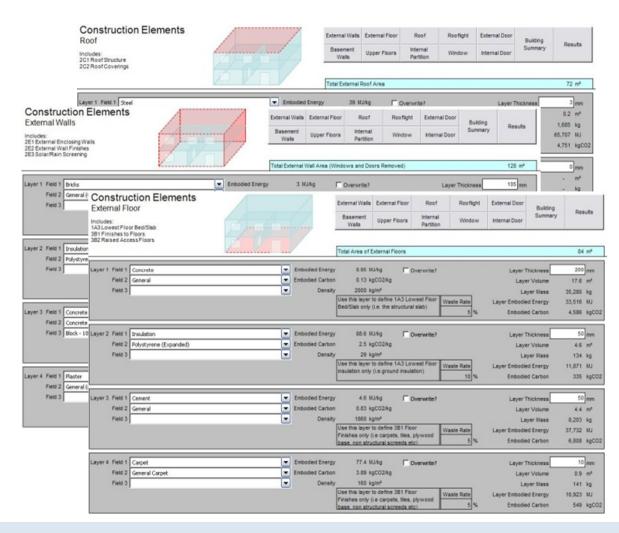
Structuring the building life cycle

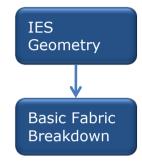
IES Geometry

Refresh Building Enter height of internal door Geometry Data Enter width of internal door Enter number of external doors Enter height of external door Enter width of external door Enter number of external rooflights Enter length of external rooflight Enter width of external roofligh 60 m² Total Area of Below Ground Basement Walls Compiled Manually from IES / m² Input / m² Overwr Total External Floor Area 84.0 External Floor 3B1, 3B2 Total Upper Floor Area 84.0 2B. 3C2 Upper Floors Total Above Ground External Wall Area 128.0 2E1, 2E2, 2E3 External Walls Total Below Ground Basement Wall Area 1A5, 2E4 **Basement Walls** Total External Roof Area 201, 202 Roof Total Internal Partition Area 144.0 2G1 Internal Partition Total Window Area 44.0 Window Total External Door Area 8.0 External Door 2F2 Total Internal Door Area 6.0 Internal Door 2H Total Rooflight Area 8.0 204 Rooflights External Wall Area Internal Partition Area External Wall Area ternal I Room Name External (windows only (internal doors not Room Code windows and doors Floor Area Floor Roof Are Area Ground Floor Office 1 SRND0000 Ground Floor Office 2 SRND0001 Ground Floor Office 3 SRND0002 60 First Floor Office 1 FRST0000 48 68

58

FRST0001 36

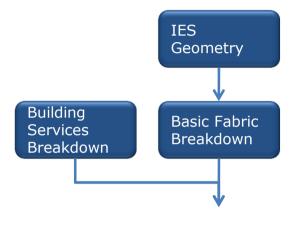




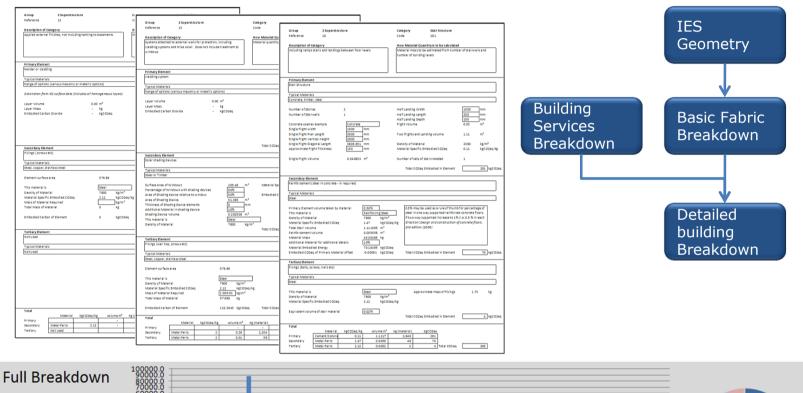
Building Summary Sheet

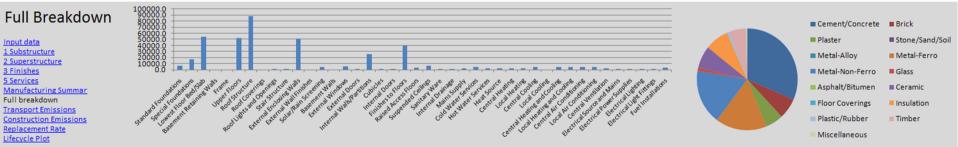
Enter number of internal door

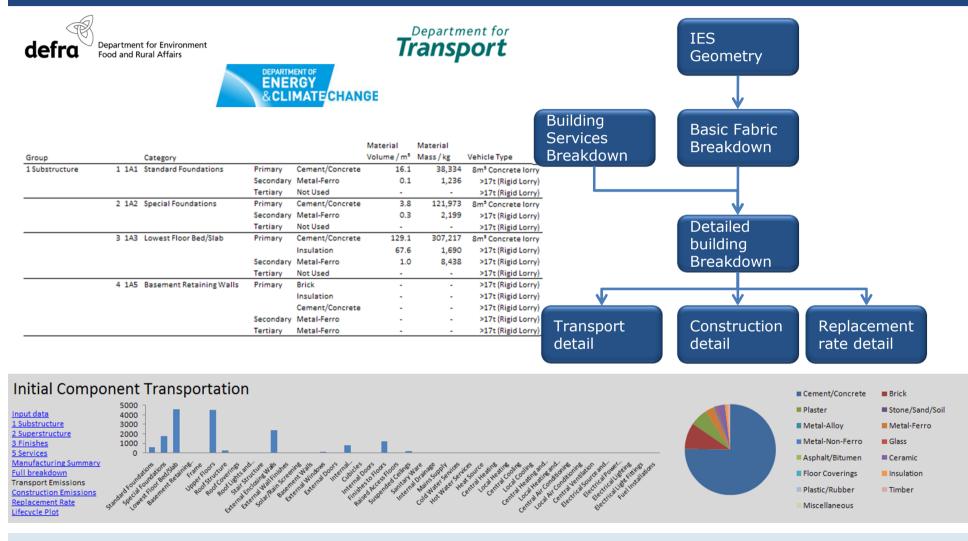
PARSONS BRINCKERHOFF

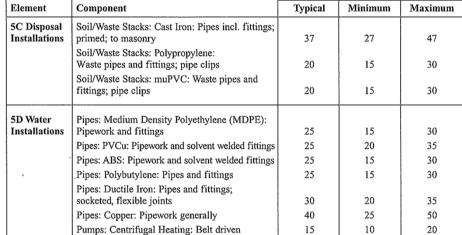


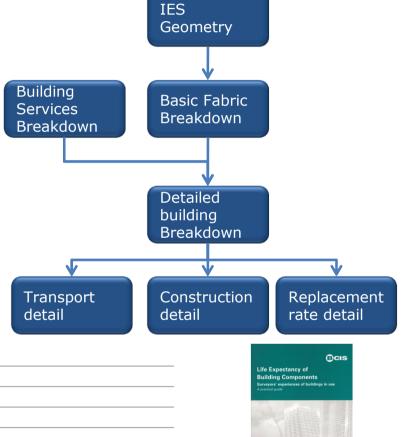
Heat emitter		(choose maxim	um of 5 types)											
			Thermal output	Radiator		Number of						Total Embodied CO2eq/	Total	Aprox. total
			at (75/65/20°C)		Radiator	items of this		Item Mass /		Material		kgCO2eq/		volume /
Manufacturer	Model	Height/mm	/W/m	kg/m	Length / mm	types	Output / kW		Material	Catergory	kgCO2eq/kg		Mass/kg	
USER SPECIFIED						3		10	Cast Iron	Metal-Ferro	1.53	45.9	30.0	
USER SPECIFIED									Cast Iron	Metal-Ferro	1.53	0.0	0.0	
USER SPECIFIED									Cast Iron	Metal-Ferro	1.53	0.0	0.0	
USER SPECIFIED									Cast Iron	Metal-Ferro	1.53	0.0	0.0	
USER SPECIFIED									Cast Iron	Metal-Ferro	1.53	0.0	0.0	
Stelrad	К1	300	517	8.38	1000	1	517		Cast Iron	Metal-Ferro	1.53	12.8	8.4	
-900000	Innne-	450	768	13.34	1000		768		Cast Iron	Metal-Ferro	1.53	0.0	0.0	
<u> 4 N N N N N N</u>		600	1000	18.3	1000		1000		Cast Iron	Metal-Ferro	1.53	0.0	0.0	
	-	700	1142	21.33	1000		1142		Cast Iron	Metal-Ferro	1.53	0.0	0.0	
	P+	300 450	776	13.71 21.31	1000		1106		Cast Iron Cast Iron	Metal-Ferro Metal-Ferro	1.53	0.0	0.0	
Hanna	anna/h	450	1409	21.31	1000		1106		Cast Iron Cast Iron	Metal-Ferro	1.53	0.0	0.0	
1 junn	UUUU H	700	1409	28.9	1000		1409		Cast Iron Cast Iron	Metal-Ferro	1.55	0.0	0.0	
	K2	300	1012	15.9	1000		1012		Cast Iron	Metal-Ferro	1.55	0.0	0.0	
		450	1409	24.8	1000		1409		Cast Iron	Metal-Ferro	1.53	0.0	0.0	
		600	1405	33.7	1000		1403		Cast Iron	Metal-Ferro	1.53	0.0	0.0	
<u>4 (nnnn)</u>		700	2011	39.13	1000		2011		Cast Iron	Metal-Ferro	1.53	0.0	0.0	
	P1	300	388	6.17	1000		388		Cast Iron	Metal-Ferro	1.53	0.0	0.0	
		450	476	9.25	1000		476		Cast Iron	Metal-Ferro	1.53	0.0	0.0	
<u>p</u>		600	610	12.33	1000		610		Cast Iron	Metal-Ferro	1.53	0.0	0.0	
		700	699	14.19	1000		699		Cast Iron	Metal-Ferro	1.53	0.0	0.0	

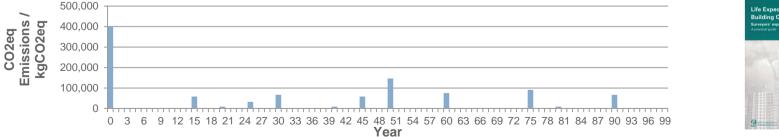

Basket Tray							
Material	Stainless Steel						
Material Category		Metal-Ferro					
Material Density		8000	kg/m³				
Material manufacturing emissio	ns	5.31	kgCO2eq/kg				
			ltem mass				Embodied
			(per 3m	Requireed	Material	Material	CO2eq/
Туре	Width / mm	Depth / mm		length / m	Volume / m ⁵	Mass / kg	kgCO2eq
Unistrut Light Basket tray	50	30	1.53		0.00	0.00	0.00
	100	30	2.04		0.00	0.00	0.00
	150	30	2.67		0.00	0.00	0.00
	200	30	3.24		0.02	3.24	9.14
	300	30	4.38		0.00	0.00	0.00
Unistrut Medium Basket tray	50	54	1.8		0.00	0.00	0.00
	100	54	2.4		0.00	0.00	0.00
	150 200	54 54	2.82 3.24		0.00	0.00	0.00
	300	54	5.4		0.00	0.00	0.00
	400 450	54	8.1 8.85		0.00	0.00	0.00
	500	54	9.6		0.00	0.00	0.00
	600 100	54 100	11.1		0.00	0.00	0.00
Unistrut Heavy Basket tray			3.24				0.00
	200 300	100	5.4 8.1		0.00	0.00	0.00
	300	100 100	8.1 9.6		0.00	0.00	0.00
	500	100	11.1	L	0.00	0.00	0.00
					0.02	3.24	9.14


			Material Category	Material Volume / m ³	Material Mass	Material Embodied CO2eg /	
Summary			category	volume / m-	/ *5	kgCO2eq	Notes
5E	Heat Source	Primary	Miscellaneous	1.0	86.0	319.5	Heat source - Boiler Type 1
			Miscellaneous	2.0	360.0	657.0	Heat source - Boiler Type 2
			Miscellaneous	3.0	355.0	647.9	Heat source - Boiler Type 3
			Not Used				Heat source - Boiler Type 4
			Not Used				Heat source - Boiler Type 5
		Secondary	Metal-Ferro	2.5	125.9	668.6	Flue

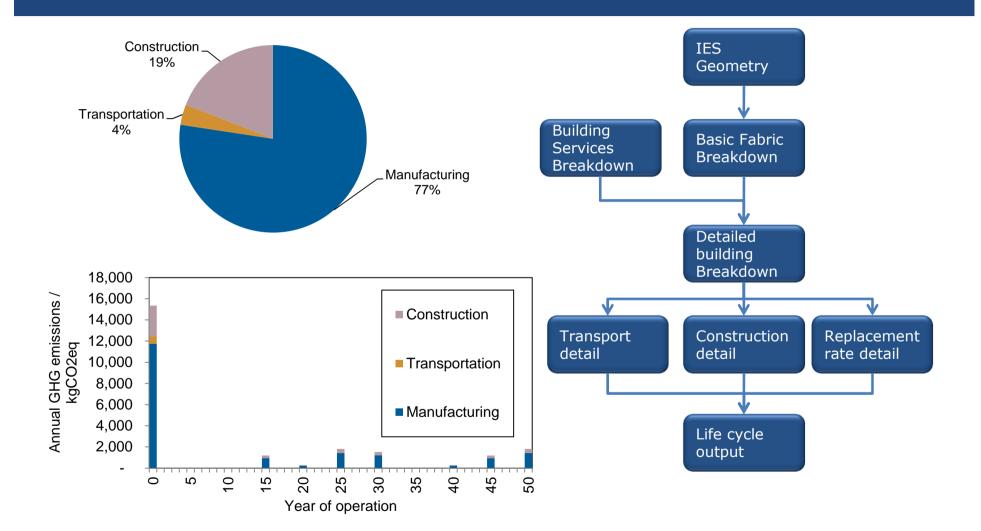


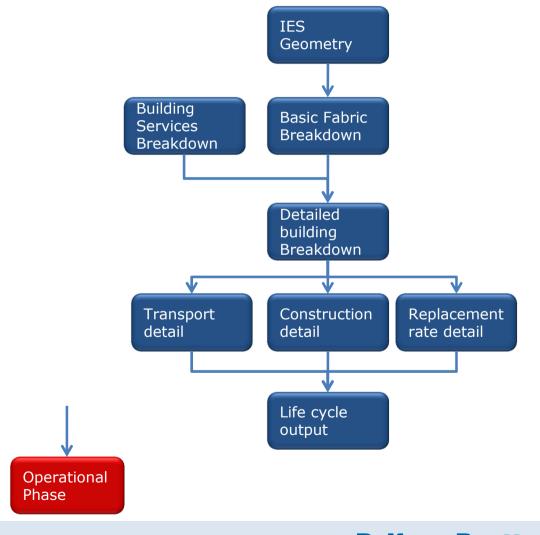

PARSONS BRINCKERHOFF



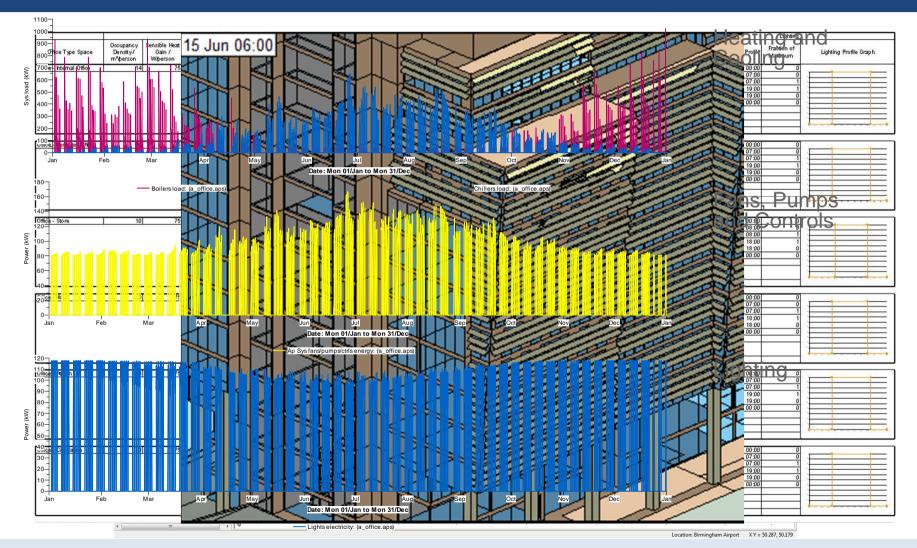

Building category	Emissions per £ project value / tonnes CO ₂ eq/£million	IES Geometry
New Domestic	23	
New Infrastructure	34	
New Shops	8	Building Desig Fabric
New Office	16	Services Breakdown
New Education	10	Breakdown
New Health	12	
New Other non domestic	20	
Refurbishment and maintenance	11	Detailed
		building Breakdown
Worker Transportation Emissions		
Project size Expected number of workers permantly on site (leave blank if not known) Expected Duration of construction	Small Construction cost less than £1.5 million, fewer than 8 people permanently on site	Transport detail Construction detail Replacement rate detail
Average travel distance for workers (one direction only)	50]km	Carbon Reading the form
Emissions from average vehicle	246 gCO2eq/km	
Assumed number of working days per week	5 days/week	TRUST
Assumed number of workers travelling Total distance traveled per worker total distance traveled by work force	5 people 5000 km 25000 km	STRATEGIC FORUM
Total emissions from worker transportation	6,150 kgCO2eq	

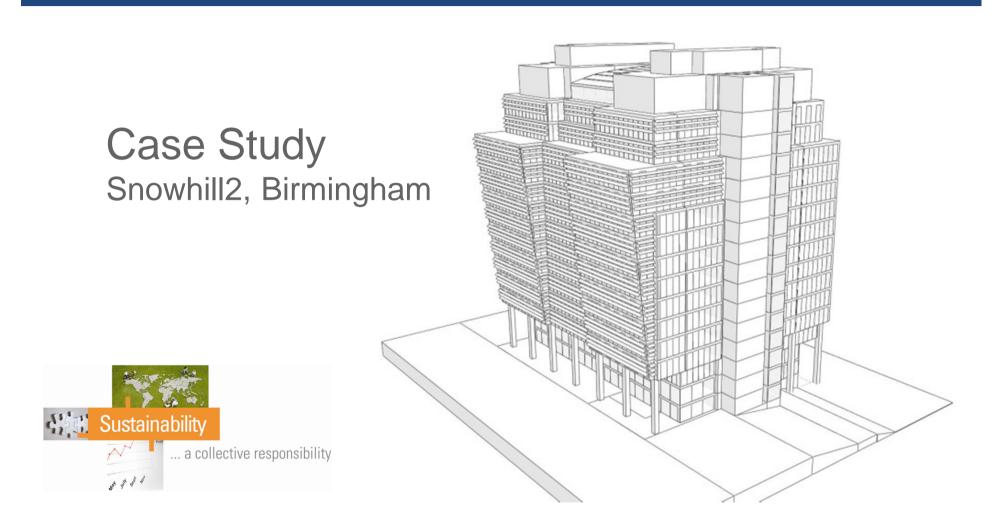
PARSONS BRINCKERHOFF





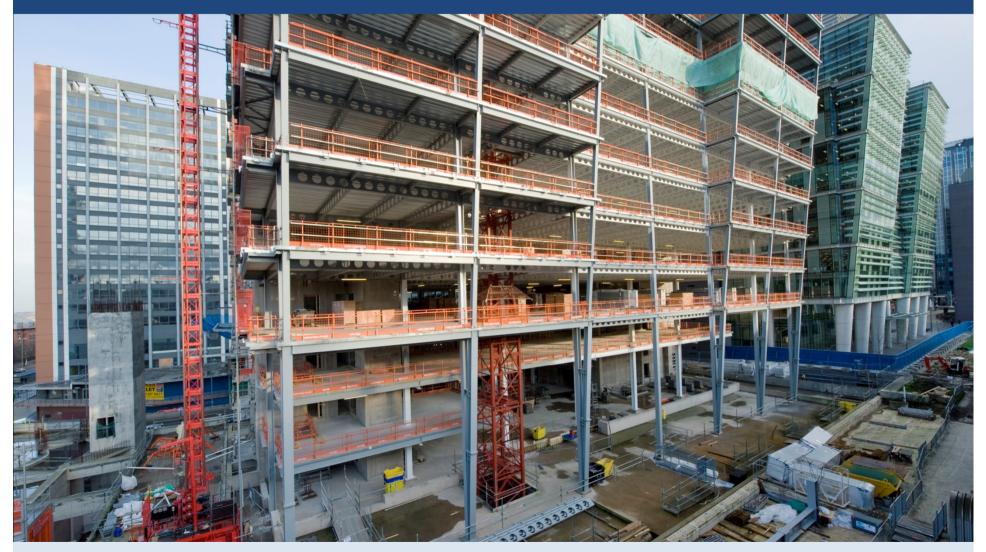
PARSONS BRINCKERHOFF




PARSONS BRINCKERHOFF

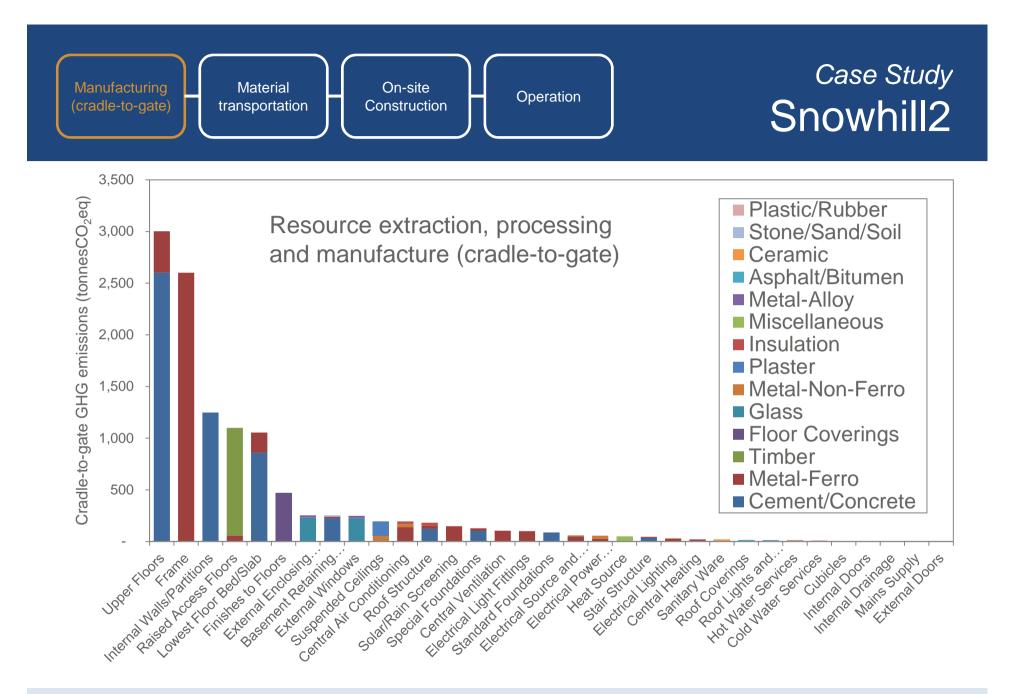
Operational emissions

PARSONS BRINCKERHOFF

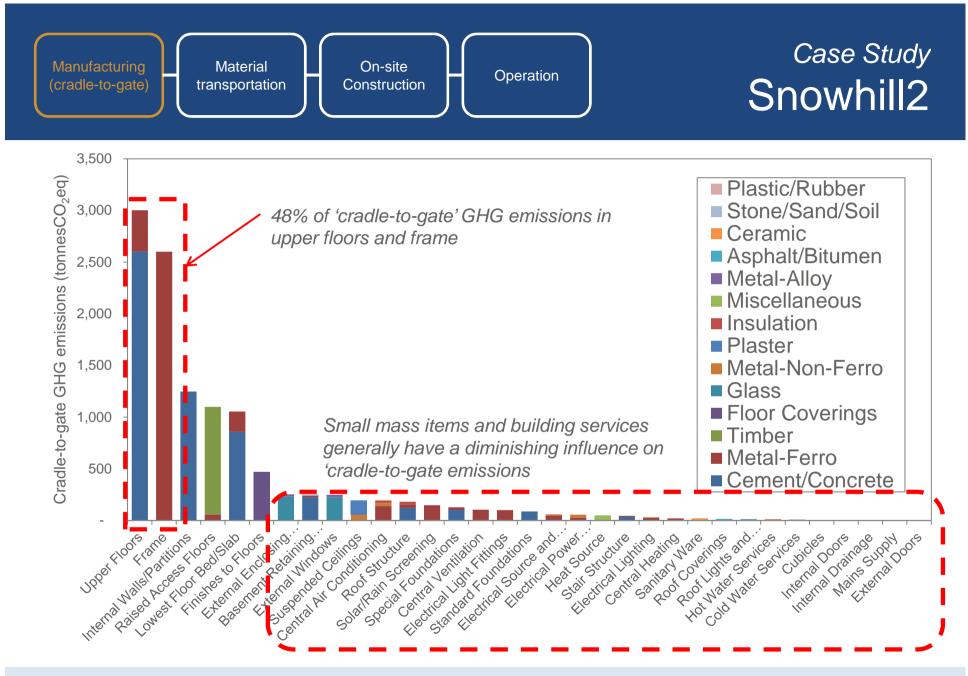


Case Study Snowhill2

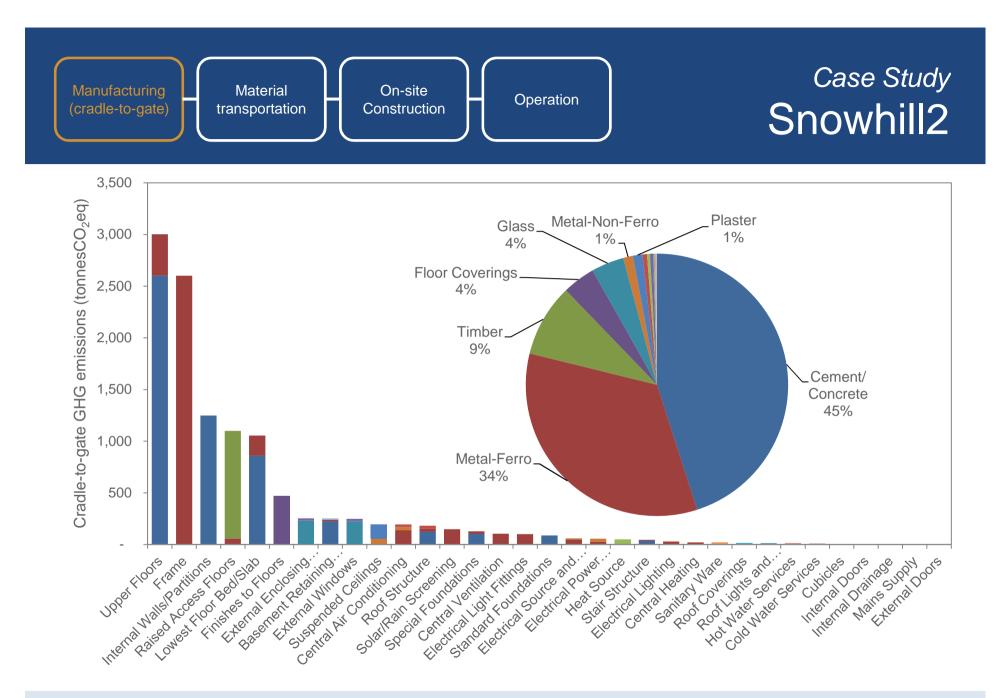
PARSONS BRINCKERHOFF


Case Study Snowhill2

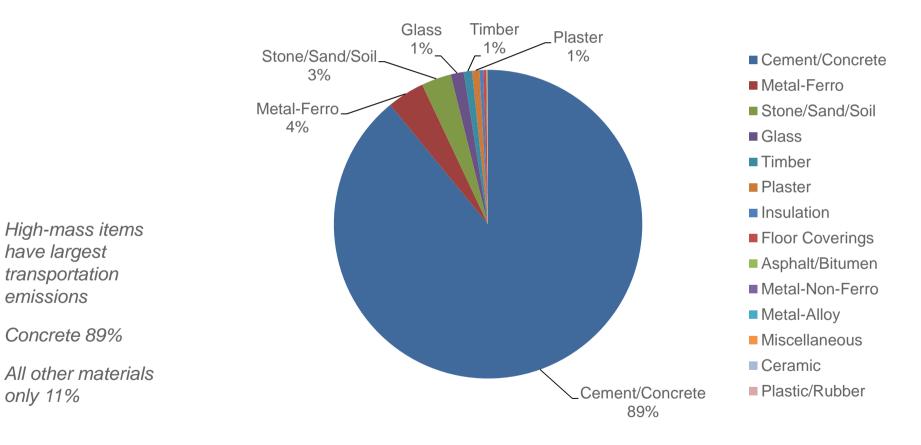
Parameter	Value
Curtain Walling U-value	1.9 W/m²K
Roof U-value	0.2 W/m²K
Window U-Value	1.9 W/m²K
Office Occupant Heat Gain	75 W/person (sensible); 55 W/person (latent); 10 m²/person
Retail Occupant Heat Gain	80 W/person (sensible); 80 W/person (latent); 6 m²/person
Office Lighting Heat Gain	12 W/m²
Retail Lighting Heat Gain	20 W/m ²
Office Equipment Heat Gain	20 W/m ²
Retail Equipment Heat Gain	10 W/m²
Heating set point temperature	21°C (06:00-20:00); 12°C out of hours
Cooling set point temperature	24°C (07:00-20:00) 50%RH ±10
Mechanical ventilation rate	12 litres/s/person (occupied hours only)
Heating system seasonal efficiency	90%
Cooling system seasonal energy efficiency ratio	2.5
Natural gas carbon intensity (for heating)	0.198 kgCO ₂ eq/kWh
Electricity carbon intensity (for cooling)	0.517 kgCO ₂ eq/kWh



PARSONS BRINCKERHOFF



PARSONS BRINCKERHOFF

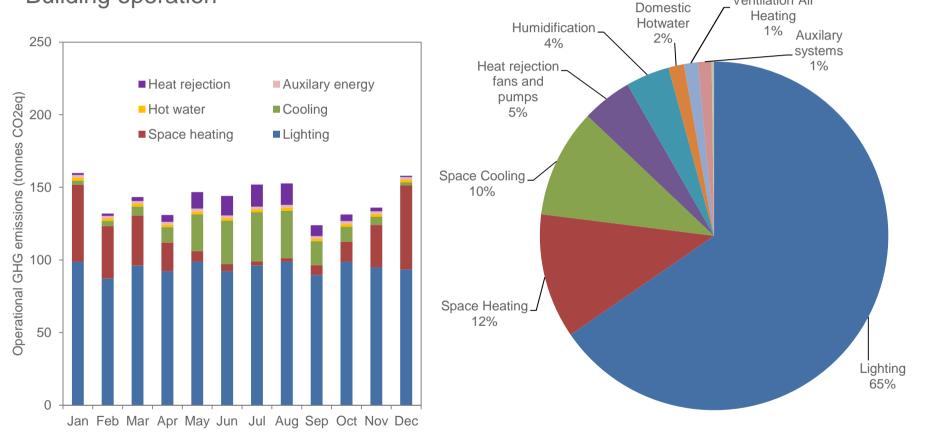


Material Transportation

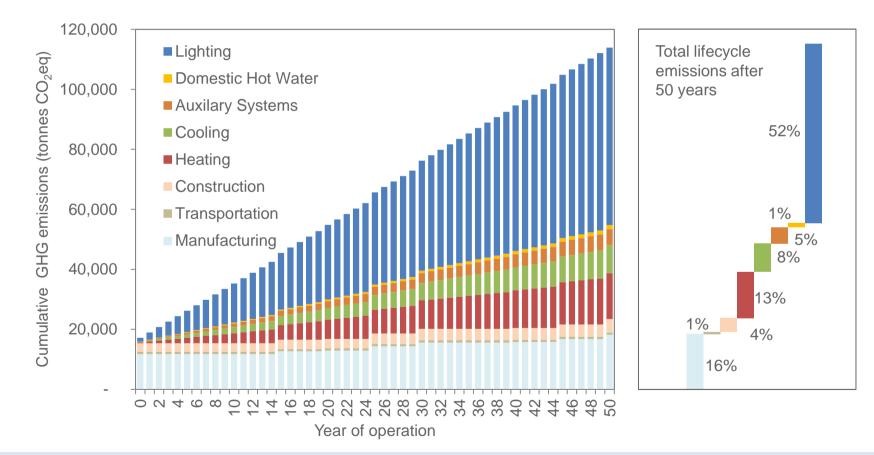
PARSONS BRINCKERHOFF

On-site construction

Building category	Emissions per £ project value / tonnes CO ₂ eq/£million		
New Domestic	23		
New Infrastructure	34		
New Shops	8		
New Office	16		
New Education	10		
New Health	12		
New Other non domestic	20		
Refurbishment and maintenance	11		

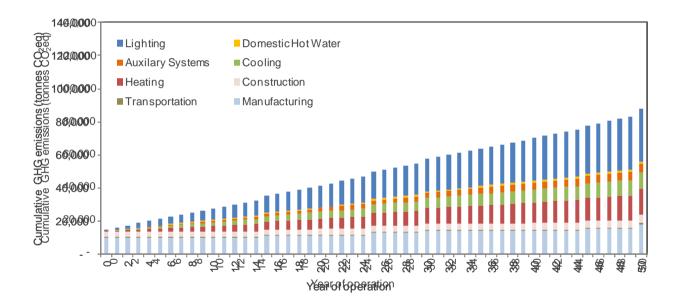

Size of Project		tCO ₂ / month	
Very large	Construction cost more than £10 million, more than 25 people permanently on site	25	S T R A T E G I C FO R U M
Large	Construction cost $\pounds 5$ to $\pounds 10$ million, between 16 and 25 people permanently on site	12	Environment Agency
Medium	Construction cost \pounds 1.5 to \pounds 5 million, between 9 and 15 people permanently on site	5	
Small	Construction cost less than £1.5 million, fewer than 8 people permanently on site	2	CARBON TRUST

Building operation



Ventilation Air

Lifecycle performance



Lifecycle performance – Potential design modifications

Improvement 1

Change fluorescent lighting to LED and include daylight dimming

Improvement 2

Change cement product to 50% Blast Furnace Slag Replacement

Base case design – **117,729** tonnes CO₂eq Improved lighting scheme–

89,570 tonnes CO2eq

(23.9% lifecycle improvement)

Use of cement replacement-

87,982 tonnes CO2eq

(25.3% lifecycle improvement)

Case Study Snowhill2

Balfour Beatty

Discussion

- Focus on 'hotspots' can address the majority of embodied carbon:
 - Approximately 77% of manufacturing emissions are due to only five components
 - Almost half of embodied emissions in the fabric are found in the primary concrete and steel elements. Making improvements to these elements will have significant impact.
 - Embodied emissions within flooring and finishes was also shown to be significant and worthy of focused improvement
 - Excessive detail on smaller elements could lead to 'analysis paralysis'
- In the context of a complete building lifecycle, material transportation and onsite construction are relatively negligible
 - Despite this, across the sector, these issues are significant

Conclusions

- Government objectives, client concerns and polarised focus on operational lifecycle phases has driven the need for whole life carbon analysis
- To be effective, this must be integral to the design process and completed at a project stage that is able to influence design decisions
- The developed tool achieves this by 'bolting' on to existing analysis processes and requiring minimal effort to produce high level results

Publication

Williams, D., Elghali, L., Wheeler, R. and France C. (2012) Climate change influence on building lifecycle greenhouse gas emissions: Case study of a UK mixed-use development, *Energy and Buildings*, 48, pp. 112-126

Contents lists available at SciVerse ScienceDir Energy and Buildings rnal homepage: www.elsevier.com/l Climate change influence on building lifecycle greenhouse gas emissions: Case David Williams^{a,b,*}, Lucia Elghali^a, Russel Wheeler^b, Chris France^a vamental Serategy, University of Sarrey, Guildford, Surrey GU2 7014, UK hof, Westbrook Mills, Godalming, Surrey GU7 202, UK ARTICLE INFO ABSTRACT r: August 2011 1. Introduction The 2008 Climate Change Act g and legally binding 80% red missions from a 1990 baseline bi the UK to a chall aseline by 2050 [1 ost half of UK en ing th by 2016 and 2019

https://www.commune

Substantent (LCA) is pressure to consider construction completed following the framework of M4040 [8]. across a wide varies of a building types in varies examples, simplification of lifecvels in marks [9].

88/5 – see front matter © 2012 Elsevier B.V. All rights reserved. 016/j.enbuild.2012.01.016 examples, simplification of environmental impacts (p-studies examples, simplification of lifecycle impacts has been all impact focusing on primary energy demand or CO₂ emissions as a princi indicator of potential environmental damage [13, 12, 13]

Whole life carbon analysis

David Williams

Parsons Brinckerhoff Westbrook Mills Godalming Surrey GU7 2AZ

Tel: 44-(0)1483-528406 Mobile: 44-(0)7990-564227

williamsdav@pbworld.com www.pbworld.com/ea

